TensorFlow
This section describes how to install and run TensorFlow and how to install Horovod to perform distributed learning.
Running TensorFlow on a single node
Precondition
- Replace
grpname
with your own ABCI group. - The Python virtual environment should be created in the home or group area so that it can be referenced by interactive nodes and each compute node.
- The sample program should be saved in the home or group area so that it can be referenced by interactive nodes and each compute node.
Installation
Here are the steps to create a Python virtual environment and install TensorFlow into the Python virtual environment.
[username@es1 ~]$ qrsh -g grpname -l rt_G.small=1 -l h_rt=1:00:00
[username@g0001 ~]$ module load python/3.11 cuda/11.8 cudnn/8.6
[username@g0001 ~]$ python3 -m venv ~/venv/tensorflow
[username@g0001 ~]$ source ~/venv/tensorflow/bin/activate
(tensorflow) [username@g0001 ~]$ pip3 install --upgrade pip setuptools
(tensorflow) [username@g0001 ~]$ pip3 install tensorflow==2.12.0
With the installation, you can use TensorFlow next time you want to use it by simply loading the module and activating the Python virtual environment, as follows
[username@g0001 ~]$ module load python/3.11 cuda/11.8 cudnn/8.6
[username@g0001 ~]$ source ~/venv/tensorflow/bin/activate
Execution
The following shows how to execute the TensorFlow sample program train.py
in the case of an interactive job and a batch job.
Run as an interactive job
[username@es1 ~]$ qrsh -g grpname -l rt_G.small=1 -l h_rt=1:00:00
[username@g0001 ~]$ module load python/3.11 cuda/11.8 cudnn/8.6
[username@g0001 ~]$ source ~/venv/tensorflow/bin/activate
(tensorflow) [username@g0001 ~]$ git clone https://github.com/tensorflow/tensorflow.git
(tensorflow) [username@g0001 ~]$ python3 tensorflow/tensorflow/examples/speech_commands/train.py --how_many_training_steps 1000,500
Run as a batch job
Save the following job script as a run.sh
file.
#!/bin/sh
#$ -l rt_G.small=1
#$ -j y
#$ -cwd
source /etc/profile.d/modules.sh
module load module load python/3.11 cuda/11.8 cudnn/8.6
source ~/venv/tensorflow/bin/activate
git clone https://github.com/tensorflow/tensorflow.git
python3 tensorflow/tensorflow/examples/speech_commands/train.py --how_many_training_steps 1000,500
deactivate
Submit a saved job script run.sh
as a batch job with the qsub command.
[username@es1 ~]$ qsub -g grpname run.sh
Your job 1234567 ('run.sh') has been submitted
Running TensorFlow on multiple nodes
Precondition
- Replace
grpname
with your own ABCI group. - The Python virtual environment should be created in the home or group area so that it can be referenced by interactive nodes and each compute node.
- The sample program should be saved in the home or group area so that it can be referenced by interactive nodes and each compute node.
Installation
Here are the steps to create a Python virtual environment and install TensorFlow and Horovod into the Python virtual environment.
[username@es1 ~]$ qrsh -g grpname -l rt_G.small=1 -l h_rt=1:00:00
[username@g0001 ~]$ module load python/3.11 cuda/11.8 cudnn/8.6 nccl/2.16 hpcx-mt/2.12
[username@g0001 ~]$ python3 -m venv ~/venv/tensorflow+horovod
[username@g0001 ~]$ source ~/venv/tensorflow+horovod/bin/activate
(tensorflow+horovod) [username@g0001 ~]$ pip3 install --upgrade pip setuptools
(tensorflow+horovod) [username@g0001 ~]$ pip3 install tensorflow==2.12.0
(tensorflow+horovod) [username@g0001 ~]$ HOROVOD_NCCL_LINK=SHARED HOROVOD_WITH_TENSORFLOW=1 HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_NCCL_HOME=$NCCL_HOME HOROVOD_WITHOUT_GLOO=1 pip3 install --no-cache-dir horovod==0.27.0
With the installation, you can use TensorFlow and Horovod next time you want to use it by simply loading the module and activating the Python virtual environment, as follows.
[username@g0001 ~]$ module load python/3.11 cuda/11.8 cudnn/8.6 nccl/2.16 hpcx-mt/2.12
[username@g0001 ~]$ source ~/venv/tensorflow+horovod/bin/activate
Execution
The following shows how to execute a sample program tensorflow2_mnist.py
of TensorFlow with Horovod for distributed learning.
Run as an interactive job
In this example, using 4 GPUs in a compute node for distributed learning.
[username@es1 ~]$ qrsh -g grpname -l rt_G.large=1 -l h_rt=1:00:00
[username@g0001 ~]$ module load python/3.11 cuda/11.8 cudnn/8.6 nccl/2.16 hpcx-mt/2.12
[username@g0001 ~]$ source ~/venv/tensorflow+horovod/bin/activate
(tensorflow+horovod) [username@g0001 ~]$ export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CUDA_HOME
(tensorflow+horovod) [username@g0001 ~]$ git clone -b v0.27.0 https://github.com/horovod/horovod.git
(tensorflow+horovod) [username@g0001 ~]$ mpirun -np 4 -map-by ppr:4:node -mca pml ob1 python3 horovod/examples/tensorflow2/tensorflow2_mnist.py
Run as a batch job
In this example, a total of 8 GPUs are used for distributed learning. 2 compute nodes are used, with 4 GPUs per compute node.
Save the following job script as a run.sh
file.
#!/bin/sh
#$ -l rt_F=2
#$ -j y
#$ -cwd
source /etc/profile.d/modules.sh
module load python/3.11 cuda/11.8 cudnn/8.6 nccl/2.16 hpcx-mt/2.12
source ~/venv/tensorflow+horovod/bin/activate
export XLA_FLAGS=--xla_gpu_cuda_data_dir=${CUDA_HOME}
git clone -b v0.27.0 https://github.com/horovod/horovod.git
NUM_GPUS_PER_NODE=4
NUM_PROCS=$(expr ${NHOSTS} \* ${NUM_GPUS_PER_NODE})
MPIOPTS="-hostfile $SGE_JOB_HOSTLIST -np ${NUM_PROCS} -map-by ppr:${NUM_GPUS_PER_NODE}:node -mca pml ob1 -mca btl self,tcp -mca btl_tcp_if_include bond0"
mpirun ${MPIOPTS} python3 horovod/examples/tensorflow2/tensorflow2_mnist.py
deactivate
Submit a saved job script run.sh
as a batch job with the qsub command.
[username@es1 ~]$ qsub -g grpname run.sh
Your job 1234567 ('run.sh') has been submitted